ГлавнаяРегистрацияВход Автомеханик Пятница, 13.12.2024, 13:30
  Каталог статей Приветствую Вас Гость | RSS

 
 
Главная » Статьи » Диагностика на персональном компьютере. » Справочная и учебная литература по диагностике. Статьи. Обзоры.

ЭЛЕМЕНТЫ СИСТЕМ ВПРЫСКА часть1

ЭЛЕМЕНТЫ СИСТЕМ ВПРЫСКА

ДАТЧИК КИСЛОРОДА (Лямбда-Зонд)

Чувствительный элемент датчика кислорода находится в потоке отработавших газов. При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК (при замкнутой петле обратной связи) представляет собой быстро изменяющееся напряжение, колеблющееся между 50 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии, сам ДК не способен генерировать какое-либо переменное напряжение. 

Выходное напряжение зависит от концентрации кислорода в отработавших газах в сопоставлении с опорными данными о содержании кислорода в атмосфере, поступающими с элемента конструкции датчика, служащего для определения концентрации атмосферного кислорода. Этот элемент представляет собой полость, соединяющуюся с атмосферой через небольшое отверстие в металлическом наружном кожухе датчика. Когда датчик находится в холодном состоянии, он не способен генерировать собственную ЭДС, и напряжение на выходе ДК равно опорному (или близко к нему).


Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом. Различают датчики с постоянным и импульсным питанием нагревательного элемента, в последнем случае, подогревом ДК управляет ЭБУ. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт. Непрогретый датчик имеет высокое внутреннее сопротивление и не генерирует собственную ЭДС, поэтому, ЭБУ "видит" только указанное стабильное опорное напряжение. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает генерировать собственное напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ "видит" изменяющееся напряжение, ему становится известным, что датчик прогрелся, и его сигнал готов для применения в целях регулирования состава смеси.

График выходного сигнала Датчика Кислорода


Датчик кислорода, применяемый в серийных системах впрыска, не способен регистрировать изменения состава смеси, заметно отличающиеся от 14,7:1, в силу того, что линейный участок его характеристики очень "узкий" (см. график выше по тексту). За этими пределами лямбда – зонд почти не меняет напряжение, то есть не регистрирует изменения состава ОГ. 



На автомобилях ВАЗ прежних модификаций (1,5 л.) в системах Евро-2 применялся датчик BOSCH 0 258 005 133. В системах Евро-3 он применялся в качестве первого ДК, устанавливаемого до катализатора. Вторым ДК, для контроля содержания вредных выбросов после катализатора устанавливается датчик с "обратным" разъемом (хотя, в встречаются и авто с одинаковыми). В новых автомобилях 1,5/1,6 л., с системой впрыска Bosch M7.9.7 и Январь 7.2, выпускаемых с октября 2004 г. устанавливается датчик BOSCH 0 258 006 537. Внешние отличия смотрите на фотографиях. Новый ДК имеет керамический нагреватель, что позволяет существенно снизить потребляемый им ток и уменьшить время прогрева.


Для замены вышедших из строя оригинальных лямбда-зондов фирма Bosch выпускает специальную серию из 7 универсальных датчиков, которые перекрывают практически весь диапазон применяемых штатно датчиков. Информация по ним ЗДЕСЬ.  

КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР

В автомобилях с обратной связью по ДК (нормы токсичности Евро-II, Евро-III и выше) применяется нейтрализатор вредных выбросов в выхлопных газах. Применение катализаторов на системах без ОС возможно, при грамотной настройке и полностью исправном двигателе, т.к наиболее эффективно работает только на смесях, близких к стихеометрическим (14,7:1), при любом отклонении от которых эффективность его значительно снижается.

Спорную по некоторым утверждениям, но безусловно интересную статью посвященную катализаторам читайте ЗДЕСЬ.

В автомобилях прошлых лет выпуска применялся керамический нейтрализатор, который позже заменил металлический. В последних моделях 16V двигатели 1,6 могут оснащаться так называемым катколлектором. Следует внимательно относиться к этому устройству - катализатор (или катколлектор) наиболее эффективно работают при очень высокой температуре и при пропусках воспламенения в каком-либо цилиндре бензин будет воспламеняться в катализаторе (катколлекторе), выделяя огромную тепловую энергию - в считанные минуты он раскаляется добела, что может стать причиной нарушения электропроводки и даже возгорания автомобиля. Именно по этой причине не рекомендуется отключать в прошивках диагностику пропусков воспламенения. Попадание несгоревшего топлива в катколлектор способно в считанные секунды разрушить его.

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА

Существует довольно много различных типов датчиков массового расхода воздуха (ДМРВ): механические (флюгерного типа), ультразвуковые, термоанемометрические и т.д.

В данном разделе мы рассмотрим устройство термоанемометрического датчика HFM-5 производства Bosch, устанавливаемого на автомобили ВАЗ. Чувствительный элемент датчика представляет собой тонкую пленку, на которой расположено несколько температурных датчиков и нагревательный резистор. В середине пленки находится область подогрева, степень нагрева которой контролируется с помощью температурного датчика. На поверхности пленки со стороны потока воздуха и с противоположной стороны симметрично расположены еще два термодатчика, которые при отсутствии потока воздуха регистрируют одинаковую температуру. При наличии потока воздуха первый датчик охлаждается, а температура второго остается практически неизменной, вследствие подогрева потока воздуха в зоне нагревателя. Дифференциальный сигнал обоих датчиков пропорционален массе проходящего воздуха. Электронная схема датчика преобразует этот сигнал в постоянное напряжение, пропорциональное массе воздуха. Такая конструкция получила название Hot Film (HFM), к ее достоинствам можно отнести высокую точность измерения и способность регистрировать обратный поток воздуха, к недостаткам – низкую надежность в условиях загрязнения и попадания влаги.
В старых системах (ЭБУ Январь-4 и GM-ISFI-2S) применялись другие термоанемометрические ДМРВ, чувствительные элементы которых были выполнены в виде нитей. Такие датчики получили название Hot Wire MAF Sensor. Выходной сигнал этих датчиков был частотный, то есть в зависимости от расхода воздуха менялось не напряжение, а частота выходных импульсов. Датчики были менее точны, не позволяли регистрировать обратный поток, но эти недостатки перекрывала очень высокая надежность.

ДМРВ – очень важный датчик в любой системе управления. На основе его сигнала производится расчет циклового наполнение цилиндра, пересчитываемого в конечном итоге в длительность импульса открытия форсунок.

На автомобили ВАЗ устанавливались несколько типов датчиков: GM, BOSCH, SIEMENS и Российский. В 1999-2004 гг. на конвейере ВАЗа устанавливались два типа датчиков 0 280 218-037 и 0 280 218-004. Эти датчики выдают разные параметры выходного напряжения (тарировки) на одинаковом расходе воздуха и взаимозамена (вернее, замена 004 на 037, как правило) возможна только с заменой тарировочных таблиц в прошивке. То же касается и нового датчика 116, устанавливаемого серийно с начала 2005 г.

В соответствии с действующей документацией, на ВАЗе разрешены к применению три модификации датчика расхода воздуха HFM5 фирмы BOSCH


Под каталогом ВАЗ понимается каталоги запасных частей для конкретных автомобилей. К сожалению на датчиках присутствуют только последние три цифры "Бошевского" каталожного номера, а ВАЗовский № отсутствует.

Модель  
№  по каталогу Бош
№ по каталогу ВАЗ
HFM5-4.7
0 280 212 004
21083-1130010-01
HFM5-4.7
0 280 212 037
21083-1130010-10
HFM5-CL
0 280 212 116
21083-1130003-20

Исторически первым был введен датчик 004 в проектах с калибровками M1V13O54,M1V13R59, M1V05F05 и M7V03E65 (а так же J5V05F16, первая неофициальная версия Январь 5.1). Первые два проекта легко определяются по внешнему виду т.к. они без нейтрализатора и в них использовался резонанасный датчик детонации. Затем эти два первых проекта были прекращены в производстве и все дальнейшие проекты (с калибровками последующих серий) стали укомплектовываться датчиками 037. Одновременно с прекращением двух вышеназванных проектов проект M7V03E65 также стал комплектоваться 037 датчиком. Модификация 037 отличается от 004 доработкой внутреннего воздушного канала датчика с целью убрать пульсации воздушного потока, которые возникают в 004 даже при ламинарном воздушном потоке в впускном коллекторе. При этом характеристика 037 сместилась по сравнению с 004. Считается, что при наличии обратной связи по кислороду эти отличия компенсируются, именно поэтому калибровка проекта M7V03E65 при смене датчика не была изменена.

С октября 2004 г. основным датчиком является 116. Модификация 116 предназначена для проектов с контроллерами нового поколения Bosch М7.9.7 и его отечественными аналогами - Январь 7.2, параллельное производство которых начато фирмами Итэлма и Автэл. Тарировка датчика и его конструкция отличаются от 004 и 037.

Датчик поставляется только в сборе, с кодом и маркируется зеленым кругом. Сам элемент имеет измененную конструкцию. В 2006 г. для усложнения кражи или подмены элементов ДМРВ для закрепления чувствительного элемента в корпусе применяются специальные однонаправленные болты.





На часть автомобилей классической компоновки совместно с ЭБУ Январь 7.2 применялись датчики Siemens-VDO (5WK97014. AVTEL):  




Они отличаются тарировкой (от нуля вольт) и схемой подключения. Подключение датчика - 1 - 12вольт; 2 - 5 вольт; 3 - выход сигнала расхода воздуха; 4 - выход сигнала температуры воздуха; 5 - общий минус.

ИНФОРМАЦИОННОЕ ПИСЬМО № 49-2002-И
По замене датчиков массового расхода воздуха
ОАО "АВТОВАЗ" Дирекция по организации поставок автомобилей, запасных частей и техническому обслуживанию автомобилей ОАО "АВТОВАЗ". Инженерно-технический центр "АвтоВАЗтехобслуживание".

Расшифровка даты выпуска ДМРВ до 2013 г

Принцип работы

Микромеханический расходомер массы воздуха с использованием нагревательной пленки.

Нагревательные и измерительные резисторы выполнены в виде тонких платиновых слоев, нанесенных на кристалл кремния*. Вычисление объема воздуха производится по разности температур между датчиками S1 и S2


1 - диэлектрическая диафрагма
Н - нагревательный резистор
SH - Датчик температуры наг. резистора
SL - Датчик температуры воздуха
S1 и S2 - темп датчики до и после нагревателя.
QLM - масса воздушного потока
t - температура



Высокая стоимость датчиков массового расхода воздуха (ДМРВ) обусловлена его высокой технологической сложностью. На фото слева - контроллер обработки информации с датчиков температуры, находящийся внутри ДМРВ 
*Пытливые умы могут самостоятельно рассмотреть и проанализировать спектрограмму датчика. При сильном увеличении (30000 раз) отчетливо можно увидеть "полосы" нагревательного резистора и датчиков температуры, содержание платины в которых доходит до 38%. Скачать для ознакомления полный спектральный анализ (1,4 Мб).

А теперь - о фальсификации. Этот материал можно было бы положить в раздел "Приколы", если б не было так грустно. Уже несколько раз мелькала информация о "муляжах" ДМРВ и вот документальное подтверждение, присланное PSP - уже второй случай обнаружения на новых автомобилях такого муляжа. Смотрите - ФОТО 1, ФОТО 2, ФОТО 3. Надеемся, что АвтоВАЗ не имеет к этому никакого отношения и ДМРВ покинули совершенно новые авто по вине расхитителей. Во всяком случае, необходимо пересмотреть охрану автомобилей по пути от производителя к потребителю.

Приобрести в "фирменном" магазине отмытый датчик в настоящее время стало довольно трудно, а вот на товарные авто вовсю ставятся "облагороженные" датчики, скупаемые у населения по 200-300 рублей. Датчики производства Саратова упаковываются в коробки по 12 шт, каждый датчик в пакете, с паспортом. Датчики производства "Германии" (или, что скорее всего, филиалом в Турции) упакованы в желтую фирменную коробку.

Бюллетель BOSCH о контрафактных датчиках массового расхода воздуха.

Описание принципа работы пленочного частотного ДМРВ (учебное пособие)

ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ 

Датчик температуры охлаждающей жидкости (ДТОЖ) представляет собой термистор, т.е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Термистор, расположенный внутри датчика имеет отрицательный температурный коэффициент сопротивления, т.е. при нагреве его сопротивление уменьшается. Высокая температура вызывает низкое сопротивление (70 Ом при 130град.) датчика, а низкая температура охлаждающей жидкости - высокое сопротивление (100800 Ом при -40град.).При замене датчика не забудьте отвинтить крышку-клапан с расширительного бачка системы охлаждения чтобы сбросить давление. Зависимость сопротивления датчика температуры охлаждающей жидкости от температуры (ориентировочно) .

температура
сопротивление Ом

100
90
80
70
60
50
45
40
30
25
20
15
10
5
0
-5
-10
-15
-20
-30
-40

177*
241*
332*
467*
667*
973*
1188*
1459*
2238*
2796
3520*
4450*
5670*
7280*
9420*
12300*
16180*
21450*
28680
52700*
100700*
Датчик практически не ломается, но бывает, врёт. Довольно часто перетираются провода у основании разъёма так, что даже припаять не к чему. При замене датчика открутите пробку расширительного бачка, что бы снять внутреннее давление в системе охлаждения. 

ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ

Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки. Датчик (ДПДЗ)представляет собой потенциометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идёт выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонки оно ниже 0.7 В. Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В. Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер самостоятельно определяет минимальное напряжение датчика и принимает его за нулевую отметку.

Самый ненадёжный элемент в системе, если он отечественный. Очень часто его приходится менять до 20-ти тыс., хотя иногда датчики "ходят" до 80 тыс. км. Были случаи, когда датчик отказывал через 200 км. пробега нового автомобиля. Датчик крайне тяжело менять без специального качественного инструмента. Дело в том, что нижний винт крепления неудобно отворачивать обычной отвёрткой, да ещё при закручивании на заводе винты сажают на герметик, который так их прихватывает, что при отворачивании нередко срывает шляпку винта. В таких случаях для замены датчика необходимо снимать весь дроссельный узел в сборе. В худшем варианте приходится просто выламывать датчик, но только в том случае если мы уверены что это 100% неисправный датчик. Разумеется предпочтительнее ставить импортный датчик дроссельной заслонки, хоть он и дороже в 3 раза. Он практически "не убиваемый".

С середины 2003 г. в продаже появились БЕСКОНТАКТНЫЕ датчики нового образца, производства Курского завода "СчетМаш". ТУ 4591-034-00225331-2002. Фото фирменной упаковки. Фото упаковки бесконтактных датчиков "Астро".

И - для любопытных - фотографии "вскрытого" ДПДЗ - фото 1 фото 2 фото 3. На фотографиях отлично виден датчик Холла и магнит рядом с ним.

ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА

ДПКВ подаёт в контроллер сигнал частоты вращения и положения коленчатого вала. Этот сигнал представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала. На базе этих импульсов контроллер управляет форсунками и системой зажигания. ДПКВ установлен на крышке масляного насоса на расстоянии около 1+0,4мм от задающего диска (шкива) коленчатого вала. Шкив коленчатого вала имеет 58 зубцов расположенных по окружности. Зубцы равноудалены и расположены через 6°. Для генерирования "импульса синхронизации" два зуба на шкиве отсутствуют. При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения. По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания. Провод ДПКВ защищён от помех экраном, замкнутым на массу через контроллер. ДПКВ - самый главный из всех датчиков, при неисправности которого двигатель работать не будет. Этот датчик рекомендуется всегда возить с собой. Диагностика ДПКВ описана здесь. Датчик ПКВ - полярный прибор - при нарушении проводки следует подключать соблюдая полярность. В "обратном" включении двигатель не заведется. Устройство датчика.

ДАТЧИК СКОРОСТИ

Принцип действия датчика скорости (ДС) основан на эффекте Холла. Датчик выдаёт на контроллер импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колёс. Датчики скорости различаются по присоединительным разъёмам к колодке жгута. Квадратный разъём применяется в системах БОШ. Датчик с круглым разъёмом применяется в системах Январь 4 и GM. Все датчики 6-ти импульсные, то есть выдают 6 импульсов за один оборот своей оси. 10-ти импульсный датчик применяется для маршрутных компьютеров карбюраторных "Самар". Сигнал датчика скорости используется системой управления для определения порогов отключения подачи топлива, а также для электронного ограничения скорости автомобиля (в новых системах управления).

Устанавливать привод спидометра в тех моделях, где он есть, в коробку передач нужно очень аккуратно, при малейшем перекосе сомнутся пластмассовые зубья ведущей шестерни привода спидометра и - полная разборка коробки передач неизбежна.

ДАТЧИК ФАЗ

Датчик фаз (ДФ) раньше применяется только на 16-ти клапанном двигателе 2112 и 8-кл. двигателе 2111 с нормами токсичности Евро-3 (экспортные версии автомобилей), в которых установлена система последовательного распределённого впрыска топлива или фазированного впрыска. Датчик фаз устанавливается на двигателе ВАЗ-2112 в верхней части головки блока цилиндров за шкивом впускного распредвала. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра. Контроллер посылает на датчик фаз опорное напряжение 12В. Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0 (при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ (при прохождении через датчик кромки задающего диска). Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов.

Приведенная выше информация была написана по состоянию на 2002-й год. В настоящее время (конец 2004 - начало 2005 гг.) в связи с ужесточением норм токсичности ДФ устанавливаются на подавляющее большинство новых автомобилей с двигателями 2111, 2112, 21114, 21124 с блоками управления впрыском Bosch M7.9.7 и Январь 7.2. Фото датчиков фазы 2111 и 2112

На автомобилях Нива с новыми блоками управления Bosch M7.9.7 в верхней части ГБЦ, на приливе устанавливается датчик 2111. Фото здесь.

РЕГУЛЯТОР ХОЛОСТОГО ХОДА

Регулятор холостого хода (РХХ) служит для поддержания установленных оборотов двигателя на холостом ходу за счет изменения количества воздуха, подаваемого в двигатель при закрытом дросселе. РХХ расположен на дроссельном патрубке и представляет собой шаговый двигатель анкерного типа с двумя обмотками. При подаче импульса на одну из них игла делает один шаг вперед, на другую - шаг назад. Через червячную передачу вращательное движение шагового двигателя преобразуется в поступательное движение штока. Конусная часть штока располагается в канале подачи воздуха для обеспечения регулирования холостого хода двигателя. Шток регулятора выдвигается или втягивается в зависимости от управляющего сигнала контроллера. Регулятор холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством воздуха, подаваемым в обход закрытой дроссельной заслонки. В полностью выдвинутом положении (выдвинутое до упора положение соответствует "0" шагов), конусная часть штока перекрывает подачу воздуха в обход дроссельной заслонки. При открывании клапан обеспечивает расход воздуха, пропорциональный перемещению штока (количеству шагов) от своего седла. Полностью открытое положение клапана соответствует перемещению штока на 255 шагов. На прогретом двигателе контроллер, управляя перемещением штока, поддерживает постоянную частоту вращения коленчатого вала на холостом ходу независимо от состояния двигателя и от изменения нагрузки.
В системах "Микас" чаще применяется несколько другое название - Регулятор Добавочного Воздуха (РДВ). РДВ имеет другую конструкцию: вместо шагового двигателя применен моментный двигатель, который поворачивает запорный элемент на определенный угол, пропорциональный напряжению.

Управление двигателем производит Электронный Блок Управления (ЭБУ). Устройство.

Более подробно и детально с принципом работы, диагностики и тестирования РХХ можно ознакомиться в курсовой работе Д. Артемова (Новочеркасск). СКАЧАТЬ (pdf, 515 Kb).

ДАТЧИК ДЕТОНАЦИИ

Датчик Детонации (ДД) служит для обнаружения детонационных ударов в ДВС и расположен на блоке цилиндров. Конструктивно датчик представляет собой пьезокерамическую пластину в корпусе. Существует две разновидности ДД - резонансные и более современные широкополосные. В резонансных ДД первичная фильтрация спектра сигнала осуществляется внутри датчика и зависит от его конструкции, поэтому, для различных типов двигателей применяют разные датчики, отличающиеся резонансной частотой. Широкополосные датчики, как следует из их названия, имеют ровную характеристику в диапазоне детонационных шумов, а фильтрация сигнала осуществляется в ЭБУ. В настоящее время резонансные ДД не устанавливаются серийно.

Категория: Справочная и учебная литература по диагностике. Статьи. Обзоры. | Добавил: Admin (26.02.2010)
Просмотров: 6351 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
 
 
 

Автомеханик © 2024